
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 3, JUNE 2011 683

Differential Encoding of DFAs for Fast Regular
Expression Matching

Domenico Ficara, Member, IEEE, Andrea Di Pietro, Student Member, IEEE,
Stefano Giordano, Senior Member, IEEE, Gregorio Procissi, Member, IEEE, Fabio Vitucci, Member, IEEE, and

Gianni Antichi, Member, IEEE

Abstract—Deep packet inspection is a fundamental task to
improve network security and provide application-specific ser-
vices. State-of-the-art systems adopt regular expressions due to
their high expressive power. They are typically matched through
deterministic finite automata (DFAs), but large rule sets need
a memory amount that turns out to be too large for practical
implementation. Many recent works have proposed improvements
to address this issue, but they increase the number of transitions
(and then of memory accesses) per character. This paper presents
a new representation for DFAs, orthogonal to most of the previous
solutions, called delta finite automata ( FA), which considerably
reduces states and transitions while preserving a transition per
character only, thus allowing fast matching. A further optimiza-
tion exploits th order relationships within the DFA by adopting
the concept of “temporary transitions.”

Index Terms—Deep packet inspection, differential encoding, fi-
nite automata (FAs), pattern matching, regular expressions.

I. INTRODUCTION

N OWADAYS, pattern matching is required in an increasing
number of network devices (intrusion prevention systems,

traffic monitors, application recognition systems). Tradition-
ally, the inspection was done with common multiple-string
matching algorithms, but state-of-the-art systems use regular
expressions (regexes) [1] to describe signature sets. They are
adopted by well-known tools, such as Snort [2] and Bro [3],
and in devices by different vendors such as Cisco [4].

Typically, finite automata (FAs) are employed to implement
regexes matching. In particular, deterministic FAs (DFAs) allow
for fast matching by requiring one state transition per char-
acter, while nondeterministic FAs (NFAs) need more transitions
per character. The drawback of DFAs is that for the current
regex sets they require an excessive amount of memory. There-
fore, many works have been recently presented with the goal
of memory reduction for DFAs, by exploiting the intrinsic re-
dundancy in regex sets. However, most of these solutions can
require more than one memory reference, thus lowering search
speed.

Manuscript received March 12, 2009; revised August 07, 2009 and July 01,
2010; accepted September 27, 2010; approved by IEEE/ACM TRANSACTIONS

ON NETWORKING Editor T. Wolf. Date of publication November 22, 2010; date
of current version June 15, 2011.

The authors are with Dipartimento di Ingegneria dell’Informazione, Univer-
sità di Pisa, 56122 Pisa, Italy (e-mail: Domenico.Ficara@iet.unipi.it; Andrea.
DiPietro@iet.unipi.it; Stefano.Giordano@iet.unipi.it; Gregorio.Procissi@iet.
unipi.it; Fabio.Vitucci@iet.unipi.it; Gianni.Antichi@iet.unipi.it)

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2010.2089639

This paper, an extension of the work in [5], introduces a novel
compact representation scheme (named FA), which is based
on the observation that since most adjacent states share sev-
eral common transitions, it is possible to delete most of them
by taking into account the different ones only (the in FA just
emphasizes that it focuses on the differences between adjacent
states). Reducing the redundancy of transitions appears to be
very appealing since the recent general trend in the proposals
for compact and fast DFAs construction (see Section II) suggests
that the information should be moved toward edges rather than
states. In particular, our idea comes from D FA [6], which intro-
duces default transitions (and a “path delay”) for this purpose.

With respect to [5], we add the concept of “temporary tran-
sition,” thus improving FA: Instead of specifying the transi-
tion set of a state with respect to its direct parents (also defined
1-step ancestors), relaxing this requirement to the adoption of

-step “ancestors” increases the chances of compression. As
we will show in the following, the best approach to exploit this

th-order dependence is to define the transitions of the states
between ancestors and child as “temporary.” This, however, in-
troduces a new problem during the construction process: The
optimal construction (in terms of memory or transition reduc-
tion) appears to be an NP-complete problem. Therefore, a direct
and oblivious approach is chosen for simplicity. Results on real
rule-sets show that our simple approach does not differ signifi-
cantly from the optimal (if ever reachable) construction. Since
this optimized technique is an extension to FA that exploits

th-order dependence, we name it FA.
While many other proposed algorithms for DFA compres-

sion require more transitions per character, FA and FA ex-
amine one state per character only, thus reducing the number of
memory accesses and speeding up the overall lookup process
(as already done in [7] and [8], although with some limitations).
This improvement comes at the cost of wider memory accesses
(with respect to previous schemes). However, it is quite common
today for DRAM memories to allow for large memory reads
(easily up to 512 bits). For this reason, if compared to D FA,
where a state may not store a transition and we could need to
sequentially perform other memory reads (even if only 32 bits
long) to learn the next state, our approach of using a single wide
memory access can provide better timing performances.

Since a FA-walk is, by nature, a process paced by slow
memory accesses and very short computation (if any), reducing
the number of memory references is crucial to the development
of a faster system. In a threaded architecture, usually each
thread performs a FA-walk on a different data packet. When a
thread issues a memory read, other threads take control and per-

1063-6692/$26.00 © 2010 IEEE



684 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 3, JUNE 2011

form their operations (again few computations and a memory
read). However, because of the very short computations of
regular DFAs and because of the large latency of DRAMs,
it is quite common for the processor to be in idle state for a
consistent percentage of time. This observation introduces a
degree of freedom that we exploit in this work: While reading
from DRAM, our code executes other operations on a fast and
small local memory.

Moreover, our techniques share the same property of many
other proposed schemes: They are orthogonal to several
previous algorithms (even the most recent XFAs [9] and
H-cFA [10]), thus allowing for higher compression rates.

In addition, a new encoding scheme for states is proposed that
exploits the association of many states with a few input charac-
ters. Such a compression scheme can be efficiently integrated
into our algorithm, allowing a further memory reduction with a
negligible increase in the state lookup time.

In summary, the main contributions of this paper are:
• a novel compact representation of DFA states FA that

allows for iterative reduction of the number of transitions
and for faster string matching;

• an optimization FA that exploits th-order relation-
ships within the DFA, thus saving further memory;

• a new state encoding scheme based on input characters.
The remainder of the paper is organized as follows. In

Section II, related works about DFAs are discussed. Section III
accurately describes FA, by starting from a motivating ex-
ample, Section IV presents the optimization of FA, and
Section V proves the integration of the proposed schemes with
the previous ones. Then, in Sections VI and VIII, the novel
encoding scheme for states and the integration with FA are il-
lustrated. Finally, Section IX presents the experimental results.

II. RELATED WORK

Deep packet inspection consists of processing the packet
payload and identifying a set of predefined patterns. Many
algorithms of standard pattern matching have been pro-
posed [11]–[14], but nowadays state-of-the-art systems replace
string sets with the more powerful regular expressions.

Traditionally, in order to search for regexes, DFAs and NFAs
are exploited. While DFAs have predictable (yet large) memory
consumption and fixed memory references per character, NFAs
consume lower memory, but may require several memory ac-
cesses per symbol in order to track all the states that are active at
a given time. Because of their parallel nature, NFAs are usually
the preferred solution in hardware platforms such as FPGAs, as
shown first in [15]. However, for software-based systems such
as network processors, the current trend in industry is to use
DFAs to represent regular expressions because of their deter-
ministic behavior, which is appealing especially in parallel sys-
tems. Indeed, in parallel platforms as modern network devices,
the overall performance of packet processing is heavily affected
by the processing times of the slowest component. Therefore,
industries are adopting for pattern-matching deterministic so-
lutions as DFAs, thus a large part of the academic research is
following the same trend.

However, it has been proved that DFAs corresponding to a
large set of regexes can blow up in space, and many recent works

have been presented with the aim of reducing their memory foot-
print. The size problem is due to two main reasons: encoding (a
naive encoding of DFA states is largely redundant) and state-ex-
plosion (when combining different regexes, the number of states
in the resulting DFA can increase exponentially). Our contribu-
tion proposes a solution to the first problem.

DFA encoding is also discussed in [6], where Kumar et al. in-
troduce the delayed input DFA D FA , a new representation for
regexes that reduces space requirements. Since many states in
DFAs have similar sets of outgoing transitions, redundant transi-
tions can be replaced with a single default one. The drawback of
this approach is the traversal of multiple states when processing
a single input character, which entails a memory bandwidth in-
crease to evaluate regular expressions. However, a bound on
the number of default transitions to be taken by a single char-
acter in D FA can be defined—generally, larger values of
(hence many memory accesses per byte) correspond to higher
memory compression.

To address the issues of too many accesses per character
and slow lookup in D FA, an improved algorithm is intro-
duced in [16] (we will call it Bec-Cro) that achieves lower
provable bounds on memory bandwidth. This work is based on
the observation that all regexes evaluations begin at a single
starting state, and the vast majority of transitions among states
lead back either to the starting state or its near neighbors.
Such an automaton requires at most state traversals when
processing a string of length . In this paper, we will show
that the memory compression of D FA can be obtained also
with a single memory access per character, as shown also by
[7] and [8].

In particular, the work in [7] proposes a technique that allows
nonequivalent states to be merged, thanks to a scheme where the
transitions in the DFA are labeled. The authors merge states with
common destinations regardless of the characters which lead
those transitions (unlike D FA), creating opportunities for more
merging and thus achieving higher memory reduction. More-
over, the authors regain the idea of bitmaps for compression pur-
poses, which necessarily increase the lookup cost by requiring
two subsequent memory accesses (first to the bitmap, and then
to the transition set).

Instead, Kumar et al. [8] show how to increase the speed
of D FAs by storing a large amount of information (on subse-
quent reachable transitions) on the edges in an automaton called
CD . While this reduces the lookup cost of D FAs, it also re-
quires a construction based on perfect hash functions that may
be time-consuming. The idea of storing more information on the
edges appears to be a general trend in the literature, and it has
been proposed in different ways: In [8], transitions carry data
on the next reachable nodes; in [7], edges have different labels;
in [10], a sort of history buffer (i.e., a small and fast cache) stores
additional information in order to efficiently follow multiple
partially matching signatures, thus yielding the state blow-up;
in [9], a finite scratch memory is used to remember various types
of information relevant to the progress of signature matching
(e.g., counters of characters) in order to keep the transition his-
tory and reduce the number of states.

Because of a patent protecting the state-merging work [7],
this work is not considered in our evaluation tests.



FICARA et al.: DIFFERENTIAL ENCODING OF DFAs FOR FAST REGULAR EXPRESSION MATCHING 685

Fig. 1. Automata recognizing �� �� �� ��, and �� � �. (a) DFA. (b) D FA. (c) �FA.

Also, the issue of state explosion has been treated in recent
works. For instance, observing that NFAs can alleviate the
memory problem but lead to a potentially large bandwidth
requirement, in [17] a hybrid DFA-NFA solution is proposed:
When constructing the hybrid-DFA, any nodes that would
contribute to state explosion retain an NFA encoding, while the
remaining ones are transformed into DFA nodes. The target
is a data structure with a size nearly that of an NFA, but with
the predictable and small memory bandwidth requirements of
a DFA.

III. DELTA FINITE AUTOMATON: FA

As discussed, several works in the recent years have focused
on memory reduction of DFAs by trading size for number of
memory accesses. The most important and cited example of
such a technique is D FA [6], where an input character (here-
after simply “char”) can require a (configurable) number of ad-
ditional steps through the automaton before reaching the right
state.

A. Motivating Example

In this section, we introduce FA, a D FA-inspired automaton
that preserves the advantages of D FA while requiring a single
memory access per input char. In order to make clearer the ra-
tionale behind FA construction and the differences with D FA,
we start by analyzing the same example of [6]. Fig. 1(a) repre-
sents a DFA on the alphabet that recognizes the reg-
ular expressions and .

In Fig. 1(b), the D FA for the same set of regexes is shown.
The main idea is to reduce the memory footprint of states by
storing only a limited number of transitions for each state and
by taking a default transition for all input chars for which a tran-
sition is not defined. When, for example, in Fig. 1(b) the state
machine is in state 3 and the input is , the default transition
to state 1 is taken. State 1 has a specified transition for char ,
therefore we jump to state 4 (as in the standard DFA).

In this example, taking a default transition costs one more hop
(one more memory access) for a single input char. However, it

may happen that also after taking a default transition, the desti-
nation state for the input char is not specified and another default
transition must be taken, and so on. In the example, the number
of transitions was reduced to nine in the D FA (while the DFA
has 20 edges), thus achieving a remarkable compression.

However, observing the graph in Fig. 1(a), it is evident that
most transitions for a given input lead to the same state, regard-
less of the starting state. In particular, adjacent states share the
majority of the next-hop states associated with the same input
chars. Then, if we jump from state 1 to state 2 and we “re-
member” (in a local memory) the entire transition set of 1, we
will already know all the transitions defined in 2 (which has the
same set of 1). This means that state 2 can be described with a
very small amount of bits. Instead, if we jump from state 1 to 3,
and the next input char is , the transition will not be the same as
the one that produces starting from 1. Then, state 3 will have
to specify its transition for .

The result of what we have just described is depicted in
Fig. 1(c) (except for the local transition set), which is the FA
equivalent to the DFA in Fig. 1(a). We have eight edges only in
the graph, and every input char requires a single state traversal.

B. Main Idea of FA

As shown in the previous section, the target of FA is to obtain
a similar compression as D FA without giving up the single
state traversal per character of DFA. The idea of FA comes
from the following observations on D FAs and DFAs.

• As shown in [16], most default transitions are directed to
states closer to the initial state.

• In a DFA, most transitions for a given input char are di-
rected to the same state.

Therefore, it becomes evident that most adjacent states share
a large part of the same transitions. Thus, we can store only the
differences between adjacent states. This requires, however, the
introduction of a supplementary structure that locally stores the
transition set of the current state. The main idea is to let this
local transition set evolve as a new state is reached. If there
is no difference with the previous state for a given character,
then the corresponding transition defined in the local memory is



686 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 3, JUNE 2011

taken. Otherwise, the transition stored in the state is chosen. In
all cases, as a new state is read, the local transition set is updated
with all the stored transitions of the state. The FA in Fig. 1(c)
only stores the transitions that must be defined for each state in
the original DFA.

C. Construction

In Algorithm 1, the process for creating a FA from an
-states DFA (for a char set of elements) is shown. The

algorithm works with the transition table of the input
DFA (i.e., an matrix that has a row per state and where
the th item in a given row stores the state number to reach upon
the reading of input char ). The final result is a “compressible”
transition table that stores the transitions required by the
FA only. All the other cells of the matrix are filled with

the special LOCAL_TX symbol and can be simply eliminated
through a bitmap, as suggested in [14]. The details of our
implementation can be found in Section VIII.

Algorithm 1: Creation of the transition table of a FA.

1: for do
2:
3: for do
4: for do
5:
6: for do
7: for do
8:
9: for do

10: if then
11:
12: else
13: If then
14:

The construction requires a step for each transition of each
pair of adjacent states in the input DFA, thus it costs

in terms of time complexity. The space complexity
is because the structure upon which the algorithm
works is another matrix. In detail, the construction al-
gorithm first initializes the matrix with EMPTY symbols and
copies the first (root) state of the original DFA in the (it will
act as base for subsequently storing the differences). Then, the
algorithm observes the states in the original DFA one at a time.
It refers to the observed state as parent. Then, it checks the chil-
dren states (i.e., the states reached in one transition from parent
state). If, for an input char , the child state stores a different
transition than the one associated with any of its parent nodes,
we cannot exploit the knowledge we have from the previous
state, and this transition must be stored in the table. On the
other hand, when all of the states that lead to the child state for
a given character share the same transition, then we can omit to
store that transition. In Algorithm 1, this is done by using the
special symbol LOCAL TX.

After the construction, since the number of transitions per
state is significantly reduced, it may happen that some of the

Fig. 2. ��� internals: a lookup example.

states have the same identical transition set. If we find identical
states, we can simply store one of them, delete the other ,
and substitute all the references to those with the single state
we left. Notice that this operation again creates the opportunity
for a new state-number reduction because the substitution of
state references makes it more probable for two or more states
to share the same transition set. Hence, we iterate the process
until the duplicate states end.

D. Lookup

The lookup in a FA is shown in Algorithm 2. First, the cur-
rent state must be read with its whole transition set. Then, it
is used to update the local transition set : For each transi-
tion defined in the set read from the state, we update the corre-
sponding entry in the local storage. This procedure comes at vir-
tually no cost since it requires a number of operations on a fast
local memory and its execution is easily masked in threaded sys-
tems or hardware implementations. Finally, the next state
is computed by simply observing the proper entry in the local
storage .

While the need to read the whole transition set may imply
more than one memory access, wide memory reads are quite
common today for DRAMs, as discussed in the introduction,
and the adoption of FA and a novel encoding scheme (that we
discuss in Section VII) allows to solve this issue.

The lookup requires a maximum of elementary operations
(such as shifts and logic AND or popcounts), one for each entry
to update. However, in our experiments, the number of updates
per state is around 10. Even if the actual processing delay strictly
depends on many factors (such as clock speed and instruction
set), in most cases the computational delay is negligible with
respect to the memory access latency.

Algorithm 2: Pseudocode for the lookup in a FA. The
current state is and the input char is .

procedure

1:
2: for do
3: if then
4:
5:
6: return

In Fig. 2, we show the transitions taken by the FA in
Fig. 1(c) on the input string abc: A circle represents a state, and



FICARA et al.: DIFFERENTIAL ENCODING OF DFAs FOR FAST REGULAR EXPRESSION MATCHING 687

Fig. 3. Automata recognizing �� �, �� ��, and �� � �. (a) DFA. (b) �FA. (c) � FA.

its internals include the transition set and a bitmap to indicate
which transitions are specified, as defined during construction.
We start in state 1, which has a fully specified transition
set. This is copied into the local transition set (below). Then
we read the input char a and move to state 2, which
specifies a single transition toward state 1 on input char c. This
is also an accepting state (underlined in figure). Then, we read
b and move to state 3. Note that the transition to be taken now
is not specified within state 2, but it is in our local transition
set. Again, state 3 has a single transition specified that this time
changes the corresponding one in the local transition set. As we
read , we move to state 5, which is again accepting.

IV. TH-ORDER DELTA FINITE AUTOMATON: FA

Instead of specifying the transition set of a state with re-
spect to its direct parents, the adoption of -step “ancestors”
increases the chances of compression. This is the approach of

FA, which is an improved version of FA.

A. Main Idea

Let us use again the DFA in [6]. Although the FA in Fig. 3(b)
shows a remarkable saving in terms of transitions with respect to
the standard DFA, its main assumption (all parents must share
the same transition for a given character) somewhat limits the
effectiveness of the compression. In the example, all the tran-
sitions for character are specified (and hence stored) for all
the five states because of a single state 3 that defines a different
transition (the transition for is directed to state 1 for states 1,
2, 4, and 5, while 3 defines an edge to 5). Notice that this is due
to the strict definition of FA rules that do not “see” further than
a single hop: The transition set of a state is stored as the differ-
ence with respect to all its direct parents.

Intuitively, just as a D FA with long default-transitions paths
compresses better than a bounded D FA with [6],
by relaxing the definition of “parents” to “ancestors” (i.e.,

-step neighbor nodes), the effectiveness of the FA approach
increases because of the larger number of possibilities.

However, a blind adoption of this concept does not provide
better results. As an example, in Fig. 3(b), defining the transi-
tions for as the difference with respect to all the “grandparents”
(second-order ancestors) still would not allow to eliminate any
new transition. Moreover, such a scheme would require to store
two local transition sets (doubling the amount of local memory
needed).

A better approach is, instead, to define the transition for in
state 3 as “temporary” in the sense that it does not get stored
in the local transition set. In this way, we force the transition to
be defined uniquely within state 3 and not to affect its children.
This means that, whenever we read state 3, the transition for
in the local transition set is not updated, but it remains as it was
in its parents. Then, we can avoid storing the transitions for
in states 2, 4, and 5, as shown in Fig. 3(c), where the temporary
transition is signaled with .

Notice that by defining temporary transitions, we efficiently
exploit th-order relationships among states, without incurring
in the need for -times larger local memories.

B. Lookup

The lookup in a FA differs very slightly from that of FA.
The only difference concerns temporary transitions, which are
valid within their state, but they are not stored in the local tran-
sition set. Therefore, the lookup time complexity of FA is
practically the same as that of FA. Fig. 4 shows also an ex-
ample of the lookup process for a FA. At , the whole
transition set of state 1 is copied into the local transition set.
Then, by char a, we move to state 2, which does not
specify any transition. When we read b , we move to
state 3, where a temporary transition (dashed box) is specified;
this transition is valid only within state 3. Finally, we
read , take the temporary transition, and end up in state 5.

C. Construction

The construction process of the FA requires the corre-
sponding FA to be constructed beforehand and used as input.
Then, the process works by recognizing subsets of nodes where



688 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 3, JUNE 2011

Fig. 4. � FA internals: a lookup example.

Fig. 5. Schematic view of the problem. Same color means same transitions (for
a given character).

Fig. 6. Backward DFS process. Same color means same transition for char-
acter �. States with temporary transitions are denoted by �.

a transition for a given character can be defined as temporary,
as shown in Fig. 5. In the picture, nodes are shown divided in
sets according to their parent–child relationships (defined by the
bold arrows) and their transitions (for a given character). In de-
tails, all nodes with the same transition for a given char share
the same color: Sets , and provide the same transition
for the char , while defines a different next state. If we set
all the transitions for in as temporary, we can avoid storing
the transitions for in .

In the construction phase, in order to recognize the nodes
where a transition can be defined as temporary, for each char
of each state in the FA, a depth-first search (DFS) is per-
formed, starting from as root. The DFS walks through the
FA backwards (from children to parents) and halts when all the

leaves are ancestor states that share the same transition (equal
to the one in for ), as depicted in Fig. 6. The depth of the tree
corresponds to the “order” of the FA we are building.

For example, in the FA of Fig. 3(c), if we start the DFS from
the transition for in state 3, the DFS stops when it reaches the
ancestor leaves 1, 2, 4, and 5. Indeed, for all the ancestors, char
leads a transition towards state 1.

Now, all the transitions for in the internal nodes (nonleaves)
of the DFS tree can be set as temporary (as happens for the white
states in Fig. 6). In the example in Fig. 3, only the state 3 is not
a leaf, and its transition for is set as temporary.

Since ancestor leaves provide the base for the transition set of
their subsequent states, in the construction we have to make sure

that, in the DFS tree for character , no ancestor leaf has a tem-
porary transition for . Hence, this process introduces some con-
straints and, as usual when dealing with constraints on graphs,
this creates new problems. As described above, when setting a
subset of transitions as temporary, we must rely on some other
transitions (the leaves of the DFS tree rooted in ) to be non-
temporary. This can be classified as a graph-coloring problem,
which is known to be NP-hard.

Algorithm 3: Pseudocode for the creation of the transition
table of a FA from the transition table of a FA.

1:
2: for all state in do
3: for all char do
4: if then
5:

6: if then
7: for all state do
8: set temporary
9: all children of

10: for all state do
11: if then
12: delete

Therefore, we adopt a straight construction: We build the
FA in a single run by observing all the transitions, by creating

the DFS tree when possible, and by blocking the DFS when a
constraint is found. This solution is very fast because it does
not explore the whole solution domain; it simply gives up the
idea of optimality. While this may appear unusual and is cer-
tainly nonoptimal, it is however motivated by a number of ex-
perimental results (reported in the following section) where this
approach does not differ significantly from the optimal setting
(if ever reachable) in terms of transitions reduction.

Algorithm 3 describes the construction of a FA from a FA.
The first step is the copy of the whole transition table of the
FA into the one of the FA. Then, for each transition in ,

we trigger a DFS with a maximum depth of . If the DFS is suc-
cessful (i.e., all the leaves are ancestor states that share the same
transition), we set the transitions of the internal nodes as
temporary, while we delete the transitions of the children
of the temporary states if they are the same as the root.

The complexity of FA construction (to be added to that
of FA, which is of the order of , as shown in
Section III-C) is bounded by , where is the
number of DFA states, is the number of chars, represents
the average connectivity degree of a state, and is the order of
the FA (hence, is an upper bound on the number of nodes
required by each DFS tree). Notice that this construction is not
much taxing since the order does not increase significantly, as
confirmed by our experimental results on real data sets.

V. APPLICATION TO H-CFA AND XFA

One of the main advantages of FA and FA, shared
also by other algorithms, is that they are orthogonal to many



FICARA et al.: DIFFERENTIAL ENCODING OF DFAs FOR FAST REGULAR EXPRESSION MATCHING 689

other schemes. Indeed, very recently, two major DFA com-
pressed techniques have been proposed, namely H-cFA [10]
and XFA [9]. Both these schemes address, in a very similar
way, the issue of state blow-up in DFA for multiple regular
expressions, thus candidating to be adopted in platforms that
provide a limited amount of memory as network processors,
FPGAs, or ASICs. The idea behind XFAs and H-cFA is to trace
the traversal of some certain states that correspond to closures
by means of a small scratch-memory. Normally, those states
would lead to state blow-up; in XFAs and H-cFA, flags and
counters are used to significantly reduce the number of states.

The application of FA and FA to H-cFA and XFA (which
is tested in Section IX) is obtained by storing the “instructions”
specified in the edge labels only once per state. Moreover, in the
construction of FA, edges are considered “different” also when
their specified “instructions” are different.

To better clarify the idea, an example of the application to
H-cFA (again taken from a previous paper [10]) is reported
in Fig. 7(a). The aim is to recognize the regular expressions

(where 4 is a length restriction) and ; labels also
include conditions and operations that operate on a flag (set/
reset with 1) and a counter (for more details, refer to [10]).
A standard DFA would need 20 states and a total of 120 tran-
sitions, while the corresponding H-cFA [Fig. 7(a)] uses 6 states
and 38 transitions.

By applying our solutions, with the previous new definition of
“different” states, we further reduce the number of transitions:
the FA representation of the H-cFA [Fig. 7(b)] requires 20 tran-
sitions, and the FA [Fig. 7(c)] 14 only.

VI. COMPRESSING CHAR-STATE PAIRS

In a FA or in a FA, the size of each state is not fixed
because an arbitrary number of transitions can be present,
and therefore state pointers are required, which generally are
standard memory addresses. They constitute a large part of the
memory occupation associated with the DFA data structure,
so we propose here a compression technique that remarkably
reduces the number of bits required for each pointer. Such an
algorithm is fully compatible with FA, FA, and most of
the other solutions for DFA compression already shown in
Section II.

The proposed algorithm (hereafter referred to as Char-State
compression or simply C-S) is based on the observation of sev-
eral standard rule sets: In most cases, the edges reaching a given
state are labeled with the same character. Table I shows, for dif-
ferent available data sets (see Section IX for more details on
sets), the percentage of nodes that are reached only by transi-
tions corresponding to a single character over the total number
of nodes.

As a consequence, a consistent number of states in the DFA
can be associated with a single char and referred to by using
a “relative” address (hereafter simply rel-id). Since the number
of such states will be smaller than the number of total states,
a rel-id will require a lower number of bits than an absolute
address. In addition, as the next state is selected on the basis
of the next input char, only its rel-id has to be included in the
state transition set, thus requiring less memory space.

Fig. 7. Automata recognizing � ��� �� � and � ��� . (a) H-cFA. Dashed and
dotted edges have same labels, respectively ���� � (1 and � � �) and ����.
Not all edges are shown to keep the figure readable. The real number of tran-
sitions is 38. (b) �FA applied to H-cFA. Here, all the 20 transitions are shown.
(c) � FA applied to H-cFA. All the transitions are shown: Six transitions have
been deleted, and two have become temporary.

TABLE I
% OF STATES REACHED BY EDGES WITH THE SAME ONE LABEL 	� 
,

C-S COMPRESSION 	� 
, AVERAGE NUMBER OF SCRATCHPAD ACCESSES

PER LOOKUP 		 
, AND INDIRECTION-TABLE SIZE 	
 


As an example, in Fig. 8, character produces transitions to
states 1 and 2 only. Therefore, 1 bit of rel-id suffices to encode



690 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 3, JUNE 2011

Fig. 8. Automata recognizing �� �, �� ��, and �� � �.

its two possible next-states. Associating state 1 with rel-id 0 and
state 2 with rel-id, we only need to store two elements in the in-
direction table for the character . During lookup, the character

is adopted as column-index of the indirection table, and the
rel-id as index of the row.

The absolute address of the next state will be retrieved by
using a small indirection table, which, as far as our experimental
results show, will be small enough to be kept in local memory,
thus allowing for fast lookup. It is clear that such a table will
suffer from a certain degree of redundancy. Some states will be
associated with several rel-ids, and their absolute address will be
reported more than once. In the next section, we then propose a
method to cope with such a redundancy, in the case it leads to
an excessive memory occupation.

Fig. 9 shows the distribution of the number of bits that may
be used for a rel-id when applying our compression scheme to
standard rule sets. As it can be noticed, next state pointers are
represented in most cases with very few bits (less than 5). Even
in the worst case, the number of bits is always below 10. In
the second column of Table I, we show the compression rate
achieved by C-S with respect to a naive implementation of DFA
for the available data sets: The average compression is between
60% and 80%.

As for the indirection table required by C-S, if several states
with multiple rel-ids are present, this might be an issue. Our
simple solution is to use an “adapting” double indirection
scheme: When a state has a unique rel-id, its absolute address is
written in the C-S table; otherwise, if it has multiple rel-ids, for
each one of them the table reports a pointer to a list of absolute
addresses. This scheme is somewhat self-adapting since, if
few states have multiple identifiers, most lookups will require
a single local-memory access, while, if many states require
multiple ids, the translation will likely require two accesses, but
the table size will be consistently reduced. The fifth column of
Table I shows the size of this indirection table when applying

Fig. 9. Distribution of the number of bits used for a rel-id with our compression
scheme for standard rule sets.

FA to the different data sets and confirms its placement in
local table.

The memory accesses and size requirements of this scheme
experimented on a number of data sets are reported in Table I.

VII. C-S IN FA AND FA

The C-S can be easily integrated within the FA (or FA)
scheme, and both algorithms can be cross-optimized. Indeed,
C-S helps FA by reducing the state size, thus allowing the
read of a whole transition set in a single memory access on av-
erage. On the other hand, C-S can take advantage of the same
heuristic of FA: Successive states (or child -step ancestors)
often present the same set of transitions. As a consequence, it is
possible to parallelize the retrieval of the data structure corre-
sponding to the next state and the translation of the relative ad-
dress of the corresponding next-state in a sort of “speculative”
approach.

More precisely, let and be two consecutive states, and
let us define as the relative address of the next hop of the
transition departing from state and associated with the char-
acter . According to the previously mentioned heuristic, it is
likely that . Since, according to our experimental
data (see Section IX), 90% of the transitions do not change be-
tween two consecutive states, we can consider such an assump-
tion to be verified with a probability of roughly 0.9. As a con-
sequence, when character is processed, it is possible to paral-
lelize two memory accesses:

• retrieve the data structure corresponding to state ;
• retrieve the absolute address corresponding to in the

local indirection table.
In order to roughly evaluate the efficiency of our implementa-
tion in terms of the state lookup time, we refer to a common
underlying hardware architecture (described in Section VIII). It
is quite common [18] that the access to a local memory block is
more than twice as fast as that of an off-chip memory bank. As
a consequence, even if a double indirection is required, the ad-
dress translation will be ready when the data associated with the



FICARA et al.: DIFFERENTIAL ENCODING OF DFAs FOR FAST REGULAR EXPRESSION MATCHING 691

next state will be available. If, as it is likely, , it will
be possible to directly access the next state (say ) through
the absolute pointer that has just been retrieved. Otherwise, a
further lookup to the local indirection table will be necessary.

Such a parallelization can remarkably reduce the mean time
needed to examine a new character. As an approximate estima-
tion of the performance improvement, let us suppose that our as-
sumption (i.e., ) is verified with probability ,
that one access to on-chip memory takes and to an ex-
ternal memory [18], and that an address translation
requires memory accesses (which is reasonable
according to the fourth column of Table I). The mean delay will
then be

This means that, even with respect to the implementation of
FA, the C-S scheme increases the lookup time by a limited 6%.

On the contrary, the execution of the two tasks serially would
require

The parallelization of tasks results then in a rough 50% speedup
gain.

VIII. IMPLEMENTATION OF OUR SOLUTIONS

In order to outline some guidelines for an efficient implemen-
tation of our solutions on an hardware architecture, we make
some general assumptions on the system architecture, satisfied
by many network processing devices (e.g., the Intel IXP net-
work processors [19]).

In particular, we assume our system to be composed of:
• a standard 32-bit processor provided with a fairly small

local memory (a few kilobytes); the access time to such
a memory is of the same order of the execution time of an
assembly level instruction (less than 10 clock cycles);

• an on-chip fast access memory block (the “scratchpad”)
with higher storage capacity (in the order of 100 kB) and
with an access time of a few dozens of clock cycles;

• an off-chip large memory bank with a storage capacity of
dozens of megabytes and with an access time in the order
of hundreds of clock cycles.

We consider both FA and C-S algorithms (the considerations
about FA are equivalent). As for the former, two structures
are needed: a unique local transition set and a set of data struc-
tures representing each state (kept in the external memory). The
local transition set is an array of 256 pointers (one per char) that
refer to the external memory location of the data structure asso-
ciated with the next state for that input char.

A FA state is stored as a variable-length structure. In its most
general form, it is composed of a 256-bit-long bitmap (spec-
ifying which valid transitions are already stored in the local
transition set and which ones within the state) and a list of the
pointers for the specified transitions. In many cases, because of
the effects of the FA transition reduction, a simple linear en-
coding with a list of pairs (char, next-state) suffices and requires
less memory than a fixed-size bitmap.

TABLE II
CHARACTERISTICS OF THE RULE SETS USED FOR EVALUATION

TABLE III
SIMPLE VERSUS OPTIMAL APPROACH: RATIO OF DELETED

AND TEMPORARY TRANSITIONS

Since in a state data structure a pointer is associated with a
unique character, in order to integrate C-S in this scheme, it is
sufficient to substitute each absolute pointer with a rel-id. The
only additional structure consists of a character-length corre-
spondence list, where the length of the rel-ids associated with
each character is stored. Such information is necessary to parse
the pointer lists in the node and in the local transition set. How-
ever, since the maximum length for the identifiers is generally
lower than 16 bits (as it is evident from Fig. 9), 4 bits for each
char are sufficient. The memory footprint of the character-length
table is well compensated by the corresponding compression of
the local transition set, composed of short rel-ids (our experi-
mental results show a compression of more than 50%).

Furthermore, if a double indirection scheme for the transla-
tion of rel-ids is adopted, a table indicating the number of unique
identifiers for each char will be necessary, in order to parse the
indirection table. This last table (that will be at most as big as the
compressed local transition table) can be kept in local memory,
thus not affecting the performance of the algorithm.

IX. EXPERIMENTAL RESULTS

In this section, we perform a series of experimental runs by
using some data sets of the Snort [2] and Bro [3] intrusion detec-
tion systems and Cisco security appliances [4]. In detail, such
data sets, presenting up to hundreds of regular expressions, have
been randomly reduced in order to obtain a reasonable amount
of memory for DFAs and to mimic the size of other sets used in
literature [6], [16], [17].

Some statistical characteristics of such data sets are summa-
rized in Table II, where we list, for each data set, the number of
rules, the ascii length range (minimum and maximum length of
regexes), and the percentage of rules including “wildcards sym-
bols” (i.e., , ?). Moreover, the table shows the number of
states and transitions in the original DFAs.

As a first set of results, in order to motivate the simplistic ap-
proach to the construction of FA, we compare our approach
to a fictious “optimal” construction (which is invalid, but serves
as a bound for our evaluation). Since the ultimate goal of this
work is to come up with an efficient way to further reduce the
number of transitions to be stored in a FA, the comparison is
expressed in terms of deleted transitions. Therefore, the results
in Table III show the ratio between the number of deleted (and
temporary) transitions of our simple approach and the number of



692 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 3, JUNE 2011

TABLE IV
COMPRESSION OF THE DIFFERENT ALGORITHMS. (a) TRANSITIONS REDUCTION (%). (b) MEMORY COMPRESSION (%)

Fig. 10. Transition reduction (with respect to �FA) as a function of the expo-
nent � in � FA.

deleted (and temporary) transitions we may have in the optimal
setting. The latter is computed by assuming that the construction
of every DFS tree is successful (i.e., simply ignoring the actual
constraints discussed above). Even two colliding trees1 are ac-
cepted, which means that we can mistakenly count an edge even
more than once. The values in the table suggest that the simple
approach is effective and provides very good results, reaching the
maximum number of deleted transitions in almost all the cases.

Once our construction process is assessed, we move to the
analysis of the effect of the “exponent” of our FA. In Fig. 10,
we report the percentage of transition reduction produced by

FA (with ) with respect to the regular FA.
As mentioned, the exponent represents the maximum depth of
the DFS trees and hence the maximum order supported; this is
obtained by simply stopping the construction whenever the tree
grows more than levels deep.

While the maximum order of the delta-encoding grows, the
average order in all the tests was always steadily between 2 and
2.12. This is consistent with the results in Fig. 10, where it is

1Two trees � and � collide if their definitions of a transition collide, for
instance if� requires a transition to be nontemporary and� sets it as temporary.

evident that the advantages of a large exponent are very limited
and usually a FA or FA provides the best results.

Table IV shows a performance comparison among FA and
FA and the previous best known algorithms. More precisely,

the table shows the compression in terms of transitions and
amount of memory for a standard DFA that recognizes such data
sets, as well as the percentage of duplicated states. For FA,
we adopt the exponent (as discussed previously). For

FA and Bec-Cro, we use the code of regex-tool [20], which
builds a standard DFA and then reduces states and transitions
through the different algorithms. In particular, for the D FA the
code runs with two different values of the bound , which is a
parameter that affects the structure size and the average number
of state-traversals per character [6]. As for CD FA, since no
public software is available as of today, we develop the code
according to the specification details provided in [8].

The compression in Table IV(a) is simply expressed as the
ratio between the number of deleted transitions and the number
of original ones, while in Table IV(b) it is expressed considering
the overall memory consumption, therefore taking into account
the different state sizes and the additional structures as well. For
fair comparison, all algorithms (with the exception of CD FA
that does not store explicit state pointers, but rather retrieves
them as the output of a hash function) have been applied in com-
bination with the C-S technique.

Overall, our algorithms achieve a degree of compression
comparable to that of D FA, Bec-Cro, and CD FA. Moreover,

FA provides a valuable improvement with respect to FA at
the expense of a minimal change in the algorithm.

The major advantage with respect to D FA and Bec-Cro is
represented by the higher lookup speed achieved by preserving
one transition per character. This result is obtained by adopting a
proper implementation model that effectively hides the latency
involved in on-chip memory accesses. While the processor is
waiting for the slow memory access to complete, it can update
the local transition table with the information it reads from the
previous state, so that the additional memory accesses do not in
fact involve any additional processing delay.

In addition, remember that since our solutions are orthogonal
to most of the previous algorithms (except for CD FA), a further
reduction is possible by combining them.



FICARA et al.: DIFFERENTIAL ENCODING OF DFAs FOR FAST REGULAR EXPRESSION MATCHING 693

Fig. 11. Mean number of memory accesses.

TABLE V
MEMORY ACCESSES WIDTH (BITS)

Fig. 11 shows the average number of memory accesses re-
quired to perform pattern matching through the compared algo-
rithms. It is worth noticing that, while FA (just as FA) needs
about 1.05 accesses (more than 1 because of the integration
with the C-S scheme), the other algorithms reported in the figure
require more accesses, thus increasing the lookup time. Notice
that the figure does not report CD FA as, according to [8], even
in case of no cache, it always requires a single memory access.

Table V reports the width of memory accesses for all evalu-
ated algorithms in terms of average number of bits involved per
state access. In order to do that, we had to make some assump-
tions on the implementation of the benchmark data structures. In
particular, we assumed that, as in our case, a state with a vari-
able number of transitions is encoded either as a list of (char,
next-state) pairs (in case a few transitions are specified) or as
a bitmap marking which transitions are defined plus a list of
next-states (in case most of the transitions are specified). As for
CD FA, we stuck to the description provided in [8].

From such a comparison, it appears that our algorithms gen-
erally need larger memory accesses with respect to the others as
they need to fetch the state as a whole in order to keep the local
transition table updated. In all cases, though, a state can be usu-
ally retrieved with a single memory read operation (as it also
emerged from the memory accesses comparison) if a reason-
able access width of 256–512 bits is assumed (and, in fact, this
is the case for several embedded network processing architec-
tures, such as Intel IXP network processors). Notice, however,
that the average state-size value can be somewhat misleading,

TABLE VI
NUMBER OF TRANSITIONS AND MEMORY COMPRESSION BY APPLYING

�FA � �-� TO XFA (THUS OBTAINING A �XFA)

as it is heavily influenced by the presence of outliers, i.e., states
that have most of their transitions specified, and thus showing a
much larger size with respect to the others.

All the above results shows that our approach presents sim-
ilar performance with respect to the other algorithms in terms of
number of accesses and compression, while it generally involves
wider memory accesses that, however, do not involve higher la-
tency in most current memory blocks (as discussed). Indeed,
our scheme looks more suitable to embedded processor archi-
tectures, where low-level programming allows to explicitly use
the cache hierarchy. For example, if compared to CD FA, both
approaches add some additional processing with respect to pre-
vious solutions in order to achieve a better performance tradeoff.
In the case of CD FA, such an overhead consists of computing
additional hash functions, while in our case it basically involves
accessing and updating the local transition table. In the first case,
the additional computation delay cannot be avoided, as it is cru-
cial to the determination of the next state. In our case, on the
contrary, the update of the local table can be carried out while
the processor is waiting for the next state to be fetched from
the slow memory, and the additional processing latency can be
completely hidden.

As a final experiment, Table VI reports the results we ob-
tained by applying FA and C-S to one of the most promising ap-
proach for regular expression matching: XFAs [9]. The data set
(courtesy of Randy Smith) is composed of single regexes with
a number of closures that would lead to a state blow-up. The
XFA representation limits the number of states (as shown in the
table). By adopting FA and C-S, we can also reduce the number
of transitions with respect to XFAs, thus achieving a further size
reduction. In detail, the reduction is more than 90% (except for
a single case) in terms of number of transitions, which corre-
sponds to a rough 90% memory compression (last column in the
table). The memory requirements, both for XFAs and XFAs,
are obtained by storing the “instructions” specified in the edge
labels only once per state.

X. CONCLUSION

In this paper, we have presented a new compressed repre-
sentation for deterministic finite automata, called Delta Finite
Automata. The algorithm considerably reduces the number of
states and transitions, and it is based on the observation that
most adjacent states share several common transitions, so it is
convenient to store only the differences between them. More-
over, we have presented an improvement to FA that exploits
the th-order dependence between states and further reduces
the number of transitions by adopting the concept of temporary
transition. Both the schemes are orthogonal to most of the pre-
vious solutions, thus allowing for higher compression rates.



694 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 3, JUNE 2011

A new encoding scheme for states has been also proposed
(which we refer to as char state), which exploits the associa-
tion of many states with a few input chars. Such a compres-
sion scheme can be efficiently integrated into FA and FA,
allowing a further memory reduction with a negligible increase
in the state lookup time. The experimental runs have shown re-
markable results in terms of lookup speed as well as the issue
of excessive memory consumption.

REFERENCES

[1] R. Sommer and V. Paxson, “Enhancing byte-level network intrusion
detection signatures with context,” in Proc. ACM CCS, 2003, pp.
262–271.

[2] “Snort: Lightweight intrusion detection for networks,” Sourcefire, Inc.,
Columbia, MD [Online]. Available: http://www.snort.org/

[3] “Bro: A system for detecting network intruders in real time,”
Lawrence Berkeley National Laboratory, Berkeley, CA [Online].
Available: http://www.bro-ids.org

[4] J. William and W. Eatherton, “An encoded version of reg-ex database
from Cisco Systems provided for research purposes,” 2005.

[5] D. Ficara, S. Giordano, G. Procissi, F. Vitucci, G. Antichi, and A. DiP-
ietro, “An improved DFA for fast regular expression matching,” SIG-
COMM Comput. Commun. Rev., vol. 38, no. 5, pp. 29–40, 2008.

[6] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “Al-
gorithms to accelerate multiple regular expressions matching for deep
packet inspection,” in Proc. ACM SIGCOMM, 2006, pp. 339–350.

[7] M. Becchi and S. Cadambi, “Memory-efficient regular expression
search using state merging,” in Proc. IEEE INFOCOM, 2007, pp.
1064–1072.

[8] S. Kumar, J. Turner, and J. Williams, “Advanced algorithms for fast
and scalable deep packet inspection,” in Proc. ANCS, 2006, pp. 81–92.

[9] R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the big bang: Fast
and scalable deep packet inspection with extended finite automata,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp. 207–218, 2008.

[10] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese, “Curing
regular expressions matching algorithms from insomnia, amnesia, and
acalculia,” in Proc. ACM ANCS, 2007, pp. 155–164.

[11] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to bib-
liographic search,” Commun. ACM, vol. 18, no. 6, pp. 333–340, 1975.

[12] B. Commentz-Walter, “A string matching algorithm fast on the av-
erage,” in Proc. ICALP, 1979, pp. 118–132.

[13] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,”
Dept. Comput. Sci., Univ. Arizona, Tucson, Tech. Rep. TR-94-17.

[14] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic
memory-efficient string matching algorithms for intrusion detection,”
in Proc. IEEE INFOCOM, 2004, pp. 333–340.

[15] R. Sidhu and V. K. Prasanna, “Fast regular expression matching using
FPGAs,” in Proc. FCCM, 2001, pp. 227–238.

[16] M. Becchi and P. Crowley, “An improved algorithm to accelerate reg-
ular expression evaluation,” in Proc. ACM ANCS, 2007, pp. 145–154.

[17] M. Becchi and P. Crowley, “A hybrid finite automaton for practical
deep packet inspection,” in Proc. ACM CoNEXT, 2007, pp. 1–12.

[18] G. Varghese, Network Algorithmics,: An Interdisciplinary Approach to
Designing Fast Networked Devices. San Mateo, CA: Morgan Kauf-
mann.

[19] E. J. Johnson and A. R. Kunze, IXP2400–2800 Programming: The
Complete Microengine Coding Guide. Santa Clara, CA: Intel Press,
2003.

[20] M. Becchi, “Regex tool,” 2009 [Online]. Available: http://regex.wustl.
edu/

Domenico Ficara (M’10) received the Ph.D. degree
in information engineering from the Department of
Information Engineering, University of Pisa, Pisa,
Italy.

During his Ph.D. studies, he collaborated with
Cisco Systems, San Jose, CA, on deep packet
inspection research and development projects. His
main research interests are deep packet inspection
and network topology discovery techniques.

Andrea Di Pietro (S’10) received the Master’s de-
gree in telecommunication engineering from the Uni-
versity of Pisa, Pisa, Italy, in April 2007 and is cur-
rently pursuing the Ph.D. degree with the NetGroup
of the University of Pisa.

From May 2007 to December 2008, he was a Re-
search Assistant with the NetGroup of the University
of Pisa. His research interests are in network tomog-
raphy and network performance measurement.

Stefano Giordano (SM’10) received the Master’s
degree in electronics engineering and the Ph.D. de-
gree in information engineering from the University
of Pisa, Pisa, Italy, in 1990 and 1994, respectively.

He is an Associate Professor with the Department
of Information Engineering, University of Pisa,
where he is responsible for the telecommunication
networks laboratories. His research interests are
telecommunication networks analysis and design,
simulation of communication networks and multi-
media communications.

Dr. Giordano is Secretary of the Communication Systems Integration and
Modeling (CSIM) Technical Committee. He is Associate Editor of the Interna-
tional Journal on Communication Systems and of the Journal of Communication
Software and Systems technically cosponsored by the IEEE Communication So-
ciety. He is a member of the Editorial Board of the IEEE Communication Sur-
veys and Tutorials. He is one of the referees of the European Union, the National
Science Foundation, and the Italian MIUR and MAP Ministries.

Gregorio Procissi (M’10) received the graduate de-
gree in telecommunication engineering and the Ph.D.
degree in information engineering from the Univer-
sity of Pisa, Pisa, Italy, in 1997 and 2002, respec-
tively.

From 2000 to 2001, he was a Visiting Scholar
with the Computer Science Department, University
of California, Los Angeles. In September 2002, he
became a Researcher with Consorzio Nazionale
Inter-Universitario per le Telecomunicazioni (CNIT)
in the Research Unit of Pisa, Italy. Since 2005, he has

been an Assistant Professor with the Department of Information Engineering,
University of Pisa. His research interests are measurements and performance
evaluation of IP networks.

Fabio Vitucci (M’09) received the Master’s degree
in telecommunication engineering and the Ph.D. de-
gree in information engineering from the University
of Pisa, Pisa, Italy, in October 2004 and June 2008,
respectively.

He currently conducts research with the Depart-
ment of Information Engineering, University of Pisa,
in the areas of packet classification, pattern matching,
and network processors.

Gianni Antichi (M’10) received the Master’s degree
in telecommunication engineering with a thesis on
implementation of a high-performance IP traffic
generator in September 2007 from the University of
Pisa, Pisa, Italy, where he has been a Ph.D. candidate
with the Department of Information Engineering
since January 2008.

He is currently doing research in the area of packet
classification, network processors, and FPGA.


